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1 Image and kernel

Last lecture we studied image and kernel of a linear function. Now we will prove one of the
properties of image and kernel. First let’s consider kernel.
Let f: V — U be a linear function, and let its kernel be Ker f — set of all elements v from

V' which map to 0. Then we can state the following properties of it.

Existence of zero. The zero vector 0 belongs to kernel of f, since f(0) = 0 — maps to 0, so

0 is in kernel.

Summation. Let vectors v and u belong to kernel, so, f(v) =0 and f(u) = 0. Then
flo+u) = f(v) + f(u) =0,
and thus v + v belongs to Ker f.

Multiplication by a scalar. Let vector v belongs to the kernel of f. Then we know that

f(v) = 0. Now for any constant k we have:
f(kv) = kf(v) =k-0=0,
thus kv belongs to Ker f.

So, we proved the following theorem:
Theorem 1.1. The kernel of linear function f :V — U is a vector subspace in V.

Example 1.2. Consider the projection function f(z,y,z) = (x,y,0). It’s kernel consists of
vectors of the form (0,0,c¢) for any constant c. Geometrically speaking, this is a z-axis in the

3-dimensional space. This is a vector subspace.

Now let’s consider the image. Let f : V — U be a linear function, and it’s image Im f is
the set of all vectors from U where we can get by applying a function to vectors from V. We'll

state some properties of it.



Existence of zero. The zero vector is in Im f since by taking f(0) we can get to 0: f(0) = 0.

Addition. Let u; and us be elements from the image of f, so there exist v; and vy from V
such that f(v;) = u; and f(vy) = uzs. Now we can consider the element vy + vy from V.
We have:
f(or +v2) = f(vr) + f(v2) = w1 + uo,

and thus u; + us belongs to Im f.

Multiplication by a scalar. Let u be a vector from Im f. Then there exists a vector v from

V such that f(v) = u. So, let’s consider an element kv for any constant k. We have:

f(kv) = kf(v) = ku,
thus ku belongs to Im f.

As for the kernel, we proved the following theorem:
Theorem 1.3. The image of a linear function f :V — U is a vector subspace in U.

Example 1.4. Consider the projection function f(z,y,z) = (x,y,0). It’s image consists of
vectors of the form (x,y,0) for all x,y € R. Geometrically speaking, this is an xy-plane in the

3-dimensional space. This is a vector subspace.

In order to continue studies of image and kernel, we would like to know more about linear

functions.

2 Matrix of a linear function

When we studied linear function for the first time we considered the following example. If A is
an m X n matrix, then we can define a linear function F4 : R” — R™ by the following formula:
Fy(z) = Az for any vector x € R™. In this part we can see, that it is one of the general cases
of linear functions.

Let’s consider any linear function f : V — W. Let vectors e, es, ..., e, form a basis in
the space V. And let we know the values f(e1), f(ea),..., f(e,). Then we can compute the
function f for any vector from V' using only these given values. To show it let’s note, that is

e;’s form a basis, then any vector v from V' can be represented as a linear combination of them:
V= a1€1 + Ao + - - + Gy€y.
Now let’s show how to compute the value f(v):

f) = flarer + ases + -+ - + aney)
= f(are1) + f(azez) + -+ - + flane,)
= CL1f(€1> + a2f(€2> + -+ anf(en).



So as we stated, function f can be computed for any vector v is we know its values on basis

vectors.

Example 2.1. Let’s consider R and a standard basis e; = (1,0,0),e5 = (0,1,0), and ez =
(0,0,1). For projection function f(x,y,z) = (z,y,0) we have:

f(1,0,0) = (1,0,0)

£(0,1,0) = (0,1,0)

f(0,0,1) = (0,0,0)
So, for any vector v = (a,b,c) = a(1,0,0) 4+ b(0,1,0) + ¢(0,0,1) one can compute f:

flw)=af(1,0,0) +bf(0,1,0) + ¢f(0,0,1)
=a(1,0,0) + b(0,1,0) + ¢(0,0,0)
= (a,b,0).

Now we’ll make a trick: we’ll write the coordinates of f(e1), f(e2),. .., f(e,) as columns of

matrix:

Ap=| fler) [flea) .. flen)

This matrix is called a matrix of a linear function. Now we can compute the value of
f(z) for any vector x by writing coordinates of = in column, and multiplying the matrix A by

vector-column z.

Example 2.2. For projection function f(x,y,z) = (x,y,0) the matriz is

1 00

Ap=10 10

0 00
1
For example, to compute f(1,2,3) we can multiply Ay by | 2
3

1 00 1

0 00 3



Example 2.3. Now let’s consider the function of taking a derivative in the space Py: D(at? +
bt + ¢) = 2at + b. Let’s take the standard basis in the space of polynomials Py and compute

values of function on basis vectors:

e ¢; = t?, and D(ey) = D(t?) = 2t. The coordinates are (0,2,0) since it is equal to
0t* + 2t + 0.

e ¢o =t, and D(ey) = D(t) = 1. The coordinates are (0,0, 1) since it is equal to 0t>+0t+1.

e ¢3=1, and D(e3) = D(1) = 0. The coordinates are (0,0,0) since it is equal to 0t*+0t+0.
So, the matriz is
000
200
010

For example, let’s take a derivative of 3t>+5t+7. We'll write this polynomial as a column-vector
3
5|, and multiply Ap by it:
7

Ap =

0 0
0 0
10
_l’_

o © N O

So, the derivative of this polynomial 6t + 5.

2.1 Proof

Let’s prove that if a matrix Ay is constructed using the method provided here, then

f(z) = Az
Proof. Let’s take any vector x = (21,2, ...,%,) = T1€1 + Toeg + - - -+ x,€,. Since we have that
flej) = (aij, azj, . .., am;)

— j-th column of the matrix A, then

f(x) = wlf(el) + x2f(62) +eee xnf(en)
= Il(an, A21y - -y aml) 4+ 4 xn(aln, Aopy - - - ,amn)

= (a1 + ajpra + - 4+ Q1pTny - oy G1T1 + GpaZa + - -+ QpnTy)

E aljxj,g angL'j,...,E amjxj).
J J J

Comparing this with the formal definition of matrix multiplication, we get that

f(x) = Agz.



