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1 Image and kernel

Last lecture we studied image and kernel of a linear function. Now we will prove one of the

properties of image and kernel. First let’s consider kernel.

Let f : V → U be a linear function, and let its kernel be Ker f — set of all elements v from

V which map to 0. Then we can state the following properties of it.

Existence of zero. The zero vector 0 belongs to kernel of f , since f(0) = 0 — maps to 0, so

0 is in kernel.

Summation. Let vectors v and u belong to kernel, so, f(v) = 0 and f(u) = 0. Then

f(v + u) = f(v) + f(u) = 0,

and thus u + v belongs to Ker f .

Multiplication by a scalar. Let vector v belongs to the kernel of f . Then we know that

f(v) = 0. Now for any constant k we have:

f(kv) = kf(v) = k · 0 = 0,

thus kv belongs to Ker f .

So, we proved the following theorem:

Theorem 1.1. The kernel of linear function f : V → U is a vector subspace in V .

Example 1.2. Consider the projection function f(x, y, z) = (x, y, 0). It’s kernel consists of

vectors of the form (0, 0, c) for any constant c. Geometrically speaking, this is a z-axis in the

3-dimensional space. This is a vector subspace.

Now let’s consider the image. Let f : V → U be a linear function, and it’s image Im f is

the set of all vectors from U where we can get by applying a function to vectors from V . We’ll

state some properties of it.
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Existence of zero. The zero vector is in Im f since by taking f(0) we can get to 0: f(0) = 0.

Addition. Let u1 and u2 be elements from the image of f , so there exist v1 and v2 from V

such that f(v1) = u1 and f(v2) = u2. Now we can consider the element v1 + v2 from V .

We have:

f(v1 + v2) = f(v1) + f(v2) = u1 + u2,

and thus u1 + u2 belongs to Im f .

Multiplication by a scalar. Let u be a vector from Im f . Then there exists a vector v from

V such that f(v) = u. So, let’s consider an element kv for any constant k. We have:

f(kv) = kf(v) = ku,

thus ku belongs to Im f .

As for the kernel, we proved the following theorem:

Theorem 1.3. The image of a linear function f : V → U is a vector subspace in U .

Example 1.4. Consider the projection function f(x, y, z) = (x, y, 0). It’s image consists of

vectors of the form (x, y, 0) for all x, y ∈ R. Geometrically speaking, this is an xy-plane in the

3-dimensional space. This is a vector subspace.

In order to continue studies of image and kernel, we would like to know more about linear

functions.

2 Matrix of a linear function

When we studied linear function for the first time we considered the following example. If A is

an m× n matrix, then we can define a linear function FA : Rn → Rm by the following formula:

FA(x) = Ax for any vector x ∈ Rn. In this part we can see, that it is one of the general cases

of linear functions.

Let’s consider any linear function f : V → W . Let vectors e1, e2, . . . , en form a basis in

the space V . And let we know the values f(e1), f(e2), . . . , f(en). Then we can compute the

function f for any vector from V using only these given values. To show it let’s note, that is

ei’s form a basis, then any vector v from V can be represented as a linear combination of them:

v = a1e1 + a2e2 + · · ·+ anen.

Now let’s show how to compute the value f(v):

f(v) = f(a1e1 + a2e2 + · · ·+ anen)

= f(a1e1) + f(a2e2) + · · ·+ f(anen)

= a1f(e1) + a2f(e2) + · · ·+ anf(en).
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So as we stated, function f can be computed for any vector v is we know its values on basis

vectors.

Example 2.1. Let’s consider R3 and a standard basis e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 =

(0, 0, 1). For projection function f(x, y, z) = (x, y, 0) we have:

f(1, 0, 0) = (1, 0, 0)

f(0, 1, 0) = (0, 1, 0)

f(0, 0, 1) = (0, 0, 0)

So, for any vector v = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) one can compute f :

f(v) = af(1, 0, 0) + bf(0, 1, 0) + cf(0, 0, 1)

= a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 0)

= (a, b, 0).

Now we’ll make a trick: we’ll write the coordinates of f(e1), f(e2), . . . , f(en) as columns of

matrix:

Af =




...
...

...
...

...
...

f(e1) f(e2) . . . f(en)
...

...
...

...
...

...




This matrix is called a matrix of a linear function. Now we can compute the value of

f(x) for any vector x by writing coordinates of x in column, and multiplying the matrix Af by

vector-column x.

Example 2.2. For projection function f(x, y, z) = (x, y, 0) the matrix is

Af =




1 0 0

0 1 0

0 0 0




For example, to compute f(1, 2, 3) we can multiply Af by




1

2

3


:

Afx =




1 0 0

0 1 0

0 0 0







1

2

3


 =




1

2

0



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Example 2.3. Now let’s consider the function of taking a derivative in the space P2: D(at2 +

bt + c) = 2at + b. Let’s take the standard basis in the space of polynomials P2 and compute

values of function on basis vectors:

• e1 = t2, and D(e1) = D(t2) = 2t. The coordinates are (0, 2, 0) since it is equal to

0t2 + 2t + 0.

• e2 = t, and D(e2) = D(t) = 1. The coordinates are (0, 0, 1) since it is equal to 0t2 +0t+1.

• e3 = 1, and D(e3) = D(1) = 0. The coordinates are (0, 0, 0) since it is equal to 0t2+0t+0.

So, the matrix is

AD =




0 0 0

2 0 0

0 1 0




For example, let’s take a derivative of 3t2+5t+7. We’ll write this polynomial as a column-vector


3

5

7


, and multiply AD by it:




0 0 0

2 0 0

0 1 0







3

5

7


 =




0

6

5




So, the derivative of this polynomial 6t + 5.

2.1 Proof

Let’s prove that if a matrix Af is constructed using the method provided here, then

f(x) = Afx.

Proof. Let’s take any vector x = (x1, x2, . . . , xn) = x1e1 +x2e2 + · · ·+xnen. Since we have that

f(ej) = (a1j, a2j, . . . , amj)

— j-th column of the matrix A, then

f(x) = x1f(e1) + x2f(e2) + · · ·+ xnf(en)

= x1(a11, a21, . . . , am1) + · · ·+ xn(a1n, a2n, . . . , amn)

= (a11x1 + a12x2 + · · ·+ a1nxn, . . . , am1x1 + am2x2 + · · ·+ amnxn)

= (
∑

j

a1jxj,
∑

j

a2jxj, . . . ,
∑

j

amjxj).

Comparing this with the formal definition of matrix multiplication, we get that

f(x) = Afx.
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